--- library_name: transformers license: apache-2.0 base_model: google/rembert tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_416 results: [] --- # populism_classifier_bsample_416 This model is a fine-tuned version of [google/rembert](https://huggingface.co/google/rembert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7517 - Accuracy: 0.8986 - 1-f1: 0.4694 - 1-recall: 0.8519 - 1-precision: 0.3239 - Balanced Acc: 0.8765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0293 | 1.0 | 8 | 1.0991 | 0.6823 | 0.2488 | 1.0 | 0.1421 | 0.8323 | | 0.0368 | 2.0 | 16 | 0.5864 | 0.8928 | 0.4660 | 0.8889 | 0.3158 | 0.8909 | | 0.001 | 3.0 | 24 | 0.6112 | 0.9337 | 0.5405 | 0.7407 | 0.4255 | 0.8426 | | 0.0009 | 4.0 | 32 | 0.7517 | 0.8986 | 0.4694 | 0.8519 | 0.3239 | 0.8765 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3