--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_095 results: [] --- # populism_classifier_bsample_095 This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8900 - Accuracy: 0.8039 - 1-f1: 0.2754 - 1-recall: 0.8636 - 1-precision: 0.1638 - Balanced Acc: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.412 | 1.0 | 13 | 0.8969 | 0.7569 | 0.2439 | 0.9091 | 0.1408 | 0.8295 | | 0.049 | 2.0 | 26 | 0.6885 | 0.7471 | 0.2543 | 1.0 | 0.1457 | 0.8678 | | 0.02 | 3.0 | 39 | 1.1921 | 0.6922 | 0.2189 | 1.0 | 0.1229 | 0.8391 | | 0.1254 | 4.0 | 52 | 0.8900 | 0.8039 | 0.2754 | 0.8636 | 0.1638 | 0.8324 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3