--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_035 results: [] --- # populism_classifier_bsample_035 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5844 - Accuracy: 0.9080 - 1-f1: 0.4444 - 1-recall: 0.6667 - 1-precision: 0.3333 - Balanced Acc: 0.7944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0316 | 1.0 | 7 | 0.5024 | 0.8425 | 0.4031 | 0.9630 | 0.2549 | 0.8992 | | 0.0114 | 2.0 | 14 | 0.8042 | 0.7382 | 0.2889 | 0.9630 | 0.1699 | 0.8440 | | 0.0093 | 3.0 | 21 | 0.5844 | 0.9080 | 0.4444 | 0.6667 | 0.3333 | 0.7944 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3