--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_011 results: [] --- # populism_classifier_bsample_011 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5113 - Accuracy: 0.8566 - 1-f1: 0.4317 - 1-recall: 0.9375 - 1-precision: 0.2804 - Balanced Acc: 0.8946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0711 | 1.0 | 6 | 0.4762 | 0.9002 | 0.4554 | 0.7188 | 0.3333 | 0.8151 | | 0.0826 | 2.0 | 12 | 0.4962 | 0.9020 | 0.4490 | 0.6875 | 0.3333 | 0.8014 | | 0.029 | 3.0 | 18 | 0.4481 | 0.8530 | 0.4336 | 0.9688 | 0.2793 | 0.9073 | | 0.0267 | 4.0 | 24 | 0.3742 | 0.8893 | 0.4404 | 0.75 | 0.3117 | 0.8239 | | 0.0054 | 5.0 | 30 | 0.4741 | 0.8548 | 0.4286 | 0.9375 | 0.2778 | 0.8936 | | 0.0072 | 6.0 | 36 | 0.5113 | 0.8566 | 0.4317 | 0.9375 | 0.2804 | 0.8946 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3