File size: 2,366 Bytes
5e469ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94b696
 
 
 
 
 
5e469ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94b696
 
5e469ec
 
 
 
 
 
 
 
 
 
f94b696
 
 
 
 
 
5e469ec
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: AnonymousCS/populism_english_bert_base_uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_classifier_340
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# populism_classifier_340

This model is a fine-tuned version of [AnonymousCS/populism_english_bert_base_uncased](https://huggingface.co/AnonymousCS/populism_english_bert_base_uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5170
- Accuracy: 0.8951
- 1-f1: 0.2381
- 1-recall: 0.4167
- 1-precision: 0.1667
- Balanced Acc: 0.6657

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1   | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.3768        | 1.0   | 20   | 0.4651          | 0.9410   | 0.1818 | 0.1667   | 0.2         | 0.5697       |
| 0.3174        | 2.0   | 40   | 0.4922          | 0.9508   | 0.2105 | 0.1667   | 0.2857      | 0.5748       |
| 0.4174        | 3.0   | 60   | 0.4369          | 0.9016   | 0.2857 | 0.5      | 0.2         | 0.7090       |
| 0.3601        | 4.0   | 80   | 0.5736          | 0.9213   | 0.2941 | 0.4167   | 0.2273      | 0.6793       |
| 0.7514        | 5.0   | 100  | 0.6534          | 0.7344   | 0.1474 | 0.5833   | 0.0843      | 0.6620       |
| 0.0811        | 6.0   | 120  | 0.5170          | 0.8951   | 0.2381 | 0.4167   | 0.1667      | 0.6657       |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3