File size: 2,141 Bytes
fb61fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5236507
 
 
 
 
 
fb61fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5236507
 
fb61fd9
 
 
 
 
 
 
 
 
 
5236507
 
 
 
fb61fd9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: AnonymousCS/populism_english_bert_large_cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_classifier_318
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# populism_classifier_318

This model is a fine-tuned version of [AnonymousCS/populism_english_bert_large_cased](https://huggingface.co/AnonymousCS/populism_english_bert_large_cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7283
- Accuracy: 0.9375
- 1-f1: 0.5294
- 1-recall: 0.5455
- 1-precision: 0.5143
- Balanced Acc: 0.7550

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1   | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.5165        | 1.0   | 32   | 0.3742          | 0.7715   | 0.3536 | 0.9697   | 0.2162      | 0.8638       |
| 0.5349        | 2.0   | 64   | 0.5770          | 0.9395   | 0.5507 | 0.5758   | 0.5278      | 0.7701       |
| 0.2874        | 3.0   | 96   | 0.6979          | 0.9570   | 0.6071 | 0.5152   | 0.7391      | 0.7513       |
| 0.0927        | 4.0   | 128  | 0.7283          | 0.9375   | 0.5294 | 0.5455   | 0.5143      | 0.7550       |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3