--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: germanic_antielite_eng_bert results: [] --- # germanic_antielite_eng_bert This model is a fine-tuned version of [google-bert/bert-large-cased](https://huggingface.co/google-bert/bert-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5546 - Accuracy: 0.9183 - F1: 0.5783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0773 | 1.0 | 701 | 0.4387 | 0.9194 | 0.5752 | | 0.057 | 2.0 | 1402 | 0.4246 | 0.9183 | 0.5671 | | 0.022 | 3.0 | 2103 | 0.5546 | 0.9183 | 0.5783 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3