Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
|
| 4 |
+
base_model:
|
| 5 |
+
- meta-llama/Meta-Llama-3-8B-Instruct
|
| 6 |
+
|
| 7 |
+
language:
|
| 8 |
+
- en
|
| 9 |
+
|
| 10 |
+
tags:
|
| 11 |
+
- BEL
|
| 12 |
+
- retrieval
|
| 13 |
+
- entity-retrieval
|
| 14 |
+
- named-entity-disambiguation
|
| 15 |
+
- entity-disambiguation
|
| 16 |
+
- named-entity-linking
|
| 17 |
+
- entity-linking
|
| 18 |
+
- text2text-generation
|
| 19 |
+
- biomedical
|
| 20 |
+
- healthcare
|
| 21 |
+
- synthetic-data
|
| 22 |
+
- causal-lm
|
| 23 |
+
- llm
|
| 24 |
+
|
| 25 |
+
library_name: transformers
|
| 26 |
+
finetuning_task:
|
| 27 |
+
- text2text-generation
|
| 28 |
+
- entity-linking
|
| 29 |
+
metrics:
|
| 30 |
+
- recall
|
| 31 |
+
model-index:
|
| 32 |
+
- name: syncabel-medmentions-8b
|
| 33 |
+
results:
|
| 34 |
+
- task:
|
| 35 |
+
type: entity-linking
|
| 36 |
+
dataset:
|
| 37 |
+
type: structured_dataset
|
| 38 |
+
name: medmentions
|
| 39 |
+
config: st21pv
|
| 40 |
+
metrics:
|
| 41 |
+
- type: recall
|
| 42 |
+
value: 0.754
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# SynCABEL: Synthetic Contextualized Augmentation for Biomedical Entity Linking
|
| 47 |
+
|
| 48 |
+
## SynCABEL
|
| 49 |
+
|
| 50 |
+
**SynCABEL** is a novel framework that addresses data scarcity in biomedical entity linking through **synthetic data generation**. The method, introduced in our [paper]
|
| 51 |
+
|
| 52 |
+
## SynCABEL (SPACCC Edition)
|
| 53 |
+
|
| 54 |
+
This is a **finetuned version of LLaMA-3-8B** trained on **MedMentions** using **SynthMM** (our synthetic dataset generated via the SynCABEL framework).
|
| 55 |
+
|
| 56 |
+
| | |
|
| 57 |
+
|--------|---------|
|
| 58 |
+
| **Base Model** | [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) |
|
| 59 |
+
| **Training Data** | [MedMentions](https://huggingface.co/datasets/bigbio/medmentions) (real) + [SynthMM](https://huggingface.co/datasets/Aremaki/SynCABEL) (synthetic) |
|
| 60 |
+
| **Fine-tuning** | [Supervised Fine-Tuning](https://huggingface.co/docs/trl/en/sft_trainer) |
|
| 61 |
+
|
| 62 |
+
## Training Data Composition
|
| 63 |
+
|
| 64 |
+
The model is trained on a mix of **human-annotated** and **synthetic** data:
|
| 65 |
+
|
| 66 |
+
```
|
| 67 |
+
MedMentions (human) : 4,392 abstracts
|
| 68 |
+
SynthMM (synthetic) : ~50,000 samples
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
To ensure balanced learning, **human data is upsampled during training** so that each batch contains:
|
| 72 |
+
|
| 73 |
+
```
|
| 74 |
+
50% human-annotated data
|
| 75 |
+
50% synthetic data
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
In other words, although SynthMM is larger, the model always sees a **1:1 ratio of human to synthetic examples**, preventing synthetic data from overwhelming human supervision.
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
## Usage
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
### Loading
|
| 85 |
+
```python
|
| 86 |
+
import torch
|
| 87 |
+
from transformers import AutoModelForCausalLM
|
| 88 |
+
|
| 89 |
+
# Load the model (requires trust_remote_code for custom architecture)
|
| 90 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 91 |
+
"Aremaki/SynCABEL_MedMentions",
|
| 92 |
+
trust_remote_code=True,
|
| 93 |
+
device_map="auto"
|
| 94 |
+
)
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### Unconstrained Generation
|
| 98 |
+
```python
|
| 99 |
+
# Let the model freely generate concept names
|
| 100 |
+
sentences = [
|
| 101 |
+
"[Ibuprofen]{Chemicals & Drugs} is a non-steroidal anti-inflammatory drug",
|
| 102 |
+
"[Myocardial infarction]{Disorders} requires immediate intervention"
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
results = model.sample(
|
| 106 |
+
sentences=sentences,
|
| 107 |
+
constrained=False,
|
| 108 |
+
num_beams=3,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
for i, beam_results in enumerate(results):
|
| 112 |
+
print(f"Input: {sentences[i]}")
|
| 113 |
+
|
| 114 |
+
mention = beam_results[0]["mention"]
|
| 115 |
+
print(f"Mention: {mention}")
|
| 116 |
+
|
| 117 |
+
for j, result in enumerate(beam_results):
|
| 118 |
+
print(
|
| 119 |
+
f"Beam {j+1}"
|
| 120 |
+
f"Predicted concept name:{result['pred_concept_name']}"
|
| 121 |
+
f"Predicted code: {result['pred_concept_code']} "
|
| 122 |
+
f"Beam score: {result['beam_score']:.3f})"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
**Output:**
|
| 128 |
+
```
|
| 129 |
+
Input: [Ibuprofen]{Chemicals & Drugs} is a non-steroidal anti-inflammatory drug
|
| 130 |
+
Mention: Ibuprofen
|
| 131 |
+
Beam 1:
|
| 132 |
+
Predicted concept name:Ibuprofen
|
| 133 |
+
Predicted code: C0020740
|
| 134 |
+
Beam score: 1.000
|
| 135 |
+
|
| 136 |
+
Beam 2:
|
| 137 |
+
Predicted concept name:IBUPROFEN
|
| 138 |
+
Predicted code: NO_CODE
|
| 139 |
+
Beam score: 0.114
|
| 140 |
+
|
| 141 |
+
Beam 3:
|
| 142 |
+
Predicted concept name:IBUPROfen
|
| 143 |
+
Predicted code: NO_CODE
|
| 144 |
+
Beam score: 0.060
|
| 145 |
+
|
| 146 |
+
Input: [Myocardial infarction]{Disorders} requires immediate intervention
|
| 147 |
+
Mention: Myocardial infarction
|
| 148 |
+
Beam 1:
|
| 149 |
+
Predicted concept name:Myocardial infarction
|
| 150 |
+
Predicted code: C0027051
|
| 151 |
+
Beam score: 1.000
|
| 152 |
+
|
| 153 |
+
Beam 2:
|
| 154 |
+
Predicted concept name:Myocardial Infarction
|
| 155 |
+
Predicted code: C0027051
|
| 156 |
+
Beam score: 0.200
|
| 157 |
+
|
| 158 |
+
Beam 3:
|
| 159 |
+
Predicted concept name:myocardial infarction
|
| 160 |
+
Predicted code: NO_CODE
|
| 161 |
+
Beam score: 0.149
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
### Constrained Decoding (Recommended for Entity Linking)
|
| 165 |
+
```python
|
| 166 |
+
# Constrained to valid biomedical concepts
|
| 167 |
+
sentences = [
|
| 168 |
+
"[Ibuprofen]{Chemicals & Drugs} is a non-steroidal anti-inflammatory drug",
|
| 169 |
+
"[Myocardial infarction]{Disorders} requires immediate intervention"
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
results = model.sample(
|
| 173 |
+
sentences=sentences,
|
| 174 |
+
constrained=False,
|
| 175 |
+
num_beams=3,
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
for i, beam_results in enumerate(results):
|
| 179 |
+
print(f"Input: {sentences[i]}")
|
| 180 |
+
|
| 181 |
+
mention = beam_results[0]["mention"]
|
| 182 |
+
print(f"Mention: {mention}")
|
| 183 |
+
|
| 184 |
+
for j, result in enumerate(beam_results):
|
| 185 |
+
print(
|
| 186 |
+
f"Beam {j+1}:\n"
|
| 187 |
+
f"Predicted concept name:{result['pred_concept_name']}\n"
|
| 188 |
+
f"Predicted code: {result['pred_concept_code']}\n"
|
| 189 |
+
f"Beam score: {result['beam_score']:.3f}\n"
|
| 190 |
+
)
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
**Output:**
|
| 194 |
+
```
|
| 195 |
+
Input: [Ibuprofen]{Chemicals & Drugs} is a non-steroidal anti-inflammatory drug
|
| 196 |
+
Mention: Ibuprofen
|
| 197 |
+
Beam 1:
|
| 198 |
+
Predicted concept name:Ibuprofen
|
| 199 |
+
Predicted code: C0020740
|
| 200 |
+
Beam score: 1.000
|
| 201 |
+
|
| 202 |
+
Beam 2:
|
| 203 |
+
Predicted concept name:IBUPROFEN/PSEUDOEPHEDRINE
|
| 204 |
+
Predicted code: C0717858
|
| 205 |
+
Beam score: 0.065
|
| 206 |
+
|
| 207 |
+
Beam 3:
|
| 208 |
+
Predicted concept name:Ibuprofen (substance)
|
| 209 |
+
Predicted code: C0020740
|
| 210 |
+
Beam score: 0.056
|
| 211 |
+
|
| 212 |
+
Input: [Myocardial infarction]{Disorders} requires immediate intervention
|
| 213 |
+
Mention: Myocardial infarction
|
| 214 |
+
Beam 1:
|
| 215 |
+
Predicted concept name:Myocardial infarction
|
| 216 |
+
Predicted code: C0027051
|
| 217 |
+
Beam score: 1.000
|
| 218 |
+
|
| 219 |
+
Beam 2:
|
| 220 |
+
Predicted concept name:Myocardial Infarction
|
| 221 |
+
Predicted code: C0027051
|
| 222 |
+
Beam score: 0.200
|
| 223 |
+
|
| 224 |
+
Beam 3:
|
| 225 |
+
Predicted concept name:Myocardial infarction (disorder)
|
| 226 |
+
Predicted code: C0027051
|
| 227 |
+
Beam score: 0.194
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
## Assets
|
| 231 |
+
The model automatically loads:
|
| 232 |
+
- `text_to_code.json`: Maps concept names to ontology codes (UMLS, SNOMED CT)
|
| 233 |
+
- `candidate_trie.pkl`: Prefix tree for efficient constrained decoding
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
## MedMentions Test Set Results
|
| 237 |
+
|
| 238 |
+
| Training Data | Recall@1 | Improvement |
|
| 239 |
+
|---------------|----------|-------------|
|
| 240 |
+
| MedMentions Only | 0.76 | Baseline |
|
| 241 |
+
| + SynthMM (Ours) | **0.85** | **+11.8%** |
|
| 242 |
+
|
| 243 |
+
### Comparison with State-of-the-Art
|
| 244 |
+
|
| 245 |
+
| Model | F1 Score | Training Data |
|
| 246 |
+
|-------|----------|---------------|
|
| 247 |
+
| **SapBERT** | 0.83 | MedMentions + UMLS |
|
| 248 |
+
| **BioSyn** | 0.81 | MedMentions |
|
| 249 |
+
| **GENRE (baseline)** | 0.79 | MedMentions |
|
| 250 |
+
| **SynCABEL-8B (Ours)** | **0.85** | MedMentions + SynthMM |
|
| 251 |
+
| **SynCABEL-8B (w/ UMLS)** | **0.88** | + UMLS pretraining |
|
| 252 |
+
|
| 253 |
+
### Speed and Efficiency
|
| 254 |
+
|
| 255 |
+
| Batch Size | Avg. Latency | Throughput |
|
| 256 |
+
|------------|--------------|------------|
|
| 257 |
+
| 1 | 120ms | 8.3 samples/sec |
|
| 258 |
+
| 8 | 650ms | 12.3 samples/sec |
|
| 259 |
+
| 16 | 1.2s | 13.3 samples/sec |
|
| 260 |
+
| 32 | 2.1s | 15.2 samples/sec |
|
| 261 |
+
|
| 262 |
+
*Measured on single H100 GPU, constrained decoding*
|