ppo / config.json
Alex
Upload folder using huggingface_hub
26fc7c9 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a91400aaf80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a91400ab010>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a91400ab0a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a91400ab130>", "_build": "<function ActorCriticPolicy._build at 0x7a91400ab1c0>", "forward": "<function ActorCriticPolicy.forward at 0x7a91400ab250>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a91400ab2e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a91400ab370>", "_predict": "<function ActorCriticPolicy._predict at 0x7a91400ab400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a91400ab490>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a91400ab520>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a91400ab5b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a9140041440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717080928003147266, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAANPMEj5yTJY/fWL3Pr0hB79oFDE+xV1FPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4aSMcZLqWMAWyUTTwBjAF0lEdAmyBhpL26CnV9lChoBkdAcKSegctGu2gHTSMBaAhHQJsiAPDpC8h1fZQoaAZHQGHv2uxKQJZoB03oA2gIR0CbKLsLv1DjdX2UKGgGR0BxRib8WKuTaAdNGQFoCEdAmypU3GXHBHV9lChoBkdARHEM5OrQxGgHS9toCEdAmyzE6YE4enV9lChoBkdAcCQ3sXzlLmgHTQsCaAhHQJsvxyXD3uh1fZQoaAZHQHMauYUnG85oB00aAWgIR0CbMVjIaLn+dX2UKGgGR0BFMWdupCKKaAdLxGgIR0CbM6qNp/PPdX2UKGgGR0Bxk7E1l5GCaAdNEgFoCEdAmzUtjbzshXV9lChoBkdAcVv08/2TPmgHTTsBaAhHQJs27fbblBB1fZQoaAZHQG9ZwH7gsK9oB01bAWgIR0CbONyJsO5KdX2UKGgGR0Bui+5lOGj9aAdNFAFoCEdAmzuaouPFN3V9lChoBkdAcKSkcjqv/2gHTS4BaAhHQJs9QtUXHip1fZQoaAZHQHCcTOkcjqxoB00ZAWgIR0CbPtMJQcghdX2UKGgGR0A8p9dNWU8naAdL8GgIR0CbQUNLUTcqdX2UKGgGR0BxQmozeoDQaAdNIQFoCEdAm0LkIsyzonV9lChoBkdAcN+erMkhR2gHTVMBaAhHQJtEtJqZc9p1fZQoaAZHQBVys8xKxs5oB0vQaAhHQJtF1HVf/m11fZQoaAZHQG6VUKArhBJoB010AWgIR0CbSdqmj0tidX2UKGgGR0BzgTrpqynlaAdNQAFoCEdAm0we27Wd3HV9lChoBkdAcS6Nr0rbxmgHTVABaAhHQJtOtTuOS4h1fZQoaAZHQHFvWSQo1DVoB002AWgIR0CbUmLJSzgNdX2UKGgGR0BwxMv114gSaAdNDwFoCEdAm1P2Pkq+anV9lChoBkdAcopFHJ9y92gHTVsBaAhHQJtV++L3sX11fZQoaAZHQHEXJGBnSORoB00DAWgIR0CbWJy8BdUsdX2UKGgGR0BvM6vTw2ETaAdNDAFoCEdAm1olDrqt5nV9lChoBkdAbl9cRlHz6WgHTQsBaAhHQJtbo0m+j/N1fZQoaAZHQHD8L/GVAzJoB00fAWgIR0CbXTfJFLFodX2UKGgGR0BxXY9bHIZJaAdNNQFoCEdAm2AZ1RtP6HV9lChoBkdAcIYaz/p+t2gHTSUBaAhHQJthtJGvwE11fZQoaAZHQGHXd74SHuZoB03oA2gIR0CbaICYTj//dX2UKGgGR0BF/UQCjk+5aAdL1WgIR0CbaagKWszVdX2UKGgGR0BUoZ+H8CPqaAdLw2gIR0CbarGff4yodX2UKGgGR0BwGLhZQpF1aAdL+2gIR0CbbUXbuc+adX2UKGgGR0BwyGEJ0GNaaAdNHQFoCEdAm27ZQ+EAYHV9lChoBkdAb6KYtxuKoGgHTTMBaAhHQJtwj+0gKWt1fZQoaAZHQEHmOXmeUY9oB0vZaAhHQJtxwYXO4Xp1fZQoaAZHQHLABJyyUs5oB00bAWgIR0CbdH68QI2PdX2UKGgGR0BwYNHSWqtHaAdNEQFoCEdAm3YAAuIykHV9lChoBkdARJtmnO0LMWgHS9RoCEdAm3cmMXJo03V9lChoBkdAbbyO9WZJCmgHTRcBaAhHQJt4uI0qH451fZQoaAZHQHGG/hZQpF1oB00+AWgIR0CbfIyFwkxAdX2UKGgGR0BxVSV0Lc9GaAdNGAFoCEdAm35/3WWhRXV9lChoBkdAbsZHS4OMEWgHTQkBaAhHQJuAjQJHAh11fZQoaAZHQHLO60tyxRloB006AWgIR0CbhC34Kx9odX2UKGgGR0BsiX1YhdMTaAdNMQFoCEdAm4X3PVurInV9lChoBkdAb+1kNnXd02gHTQsBaAhHQJuHaqvNeMR1fZQoaAZHQHBr/7JnxrloB00mAWgIR0CbiRe0G/vfdX2UKGgGR0Bw3Tm7rcCYaAdNFAFoCEdAm4vLKNhmXnV9lChoBkdAbNhC5VfeDWgHTSkBaAhHQJuNbWvr4WV1fZQoaAZHQGQGM7dSEUVoB03oA2gIR0CblA32EkB0dX2UKGgGR0BvBtvES/TLaAdNGwFoCEdAm5Wh/iHZb3V9lChoBkdAcx9p7TlT32gHS+xoCEdAm5buQ2dd3XV9lChoBkdAK1LsjVx0dWgHS+BoCEdAm5lo7Njbz3V9lChoBkdAcVJmcOLBK2gHTQcBaAhHQJua2/cnE2p1fZQoaAZHQHELqNyYG+toB00dAWgIR0CbnF+ocaOxdX2UKGgGR0BvIs/D+BH1aAdNFwFoCEdAm53lawD/2nV9lChoBkdAcTOFyaNMoWgHTUsBaAhHQJug5RaX8fp1fZQoaAZHQG8lzo+wC8xoB0v/aAhHQJuiSk56t1Z1fZQoaAZHQHFPHQ+lj3FoB00iAWgIR0Cbo+0JF9a2dX2UKGgGR0BwwZj2Bas7aAdL82gIR0CbpnkKNQ0odX2UKGgGR0BxXBbyH2ytaAdNFAFoCEdAm6f7QHAymHV9lChoBkdARhp7iQ1aXGgHS89oCEdAm6keKXOW0XV9lChoBkdAcEk8Cgbp/2gHTRsBaAhHQJuqr7oB7u51fZQoaAZHQHAEjv/io89oB0vzaAhHQJut+thd+od1fZQoaAZHQHEkjBhx5s1oB00cAWgIR0Cbr/bmlqJudX2UKGgGR0BzNL9uP3i8aAdL+mgIR0CbsfSM98qndX2UKGgGR0BvU5ZjhDPXaAdL/GgIR0CbtAX/HYHxdX2UKGgGR0BwJNDb8FY/aAdNFwFoCEdAm7bqUNayKXV9lChoBkdAb6INHYpUgmgHS+poCEdAm7g0Eovzv3V9lChoBkdAbpHYdQwbl2gHTQkBaAhHQJu5rIHTqjd1fZQoaAZHQD4VWXC0ngJoB0u+aAhHQJu6uLVFx4p1fZQoaAZHQHFhGOp84PxoB0v6aAhHQJu8Fm9QGfR1fZQoaAZHQEmOSSvC/GloB0vmaAhHQJu+oM9bHIZ1fZQoaAZHQHHmKSTyJ9BoB0v2aAhHQJu/97RfF751fZQoaAZHQG95LLhaTwFoB00OAWgIR0CbwXUTtb9qdX2UKGgGR0BvfQsCkoF3aAdNEwFoCEdAm8MBP9DQaHV9lChoBkdAb+e9q1w5vWgHTTABaAhHQJvF8woLG711fZQoaAZHQG8JqkVN5+poB00XAWgIR0Cbx3q2SdOJdX2UKGgGR0Bw4M5Lh73PaAdNEQFoCEdAm8jzImw7knV9lChoBkdAbP9RUFSsKmgHTRYBaAhHQJvLpY+0PYp1fZQoaAZHQHCUr9MsYl9oB00NAWgIR0CbzTHPeHi4dX2UKGgGR0BtSv2RJVbSaAdNCAFoCEdAm87IQFs54nV9lChoBkdAcOLpNsWO62gHTSkBaAhHQJvQY3sHB1t1fZQoaAZHQHBtdORDCxhoB00JAWgIR0Cb0wzSCvovdX2UKGgGR0Bw3OQdS2piaAdNLgFoCEdAm9SwgDA8CHV9lChoBkdAPIMFQl8gIWgHS9VoCEdAm9XYCMglnnV9lChoBkdAcd51wHZ9NWgHTQEBaAhHQJvXQTTOPeZ1fZQoaAZHQHG2P7JnxrloB00XAWgIR0Cb2fPzFuNxdX2UKGgGR0Btxg0ygwoLaAdNAgFoCEdAm9tm4ZuQ63V9lChoBkdAbymzDXOGCmgHTRABaAhHQJvdHb5/LDB1fZQoaAZHQHL2MRtgrpdoB01EAWgIR0Cb4QCemNzbdX2UKGgGR0Bv/UvugHu7aAdNKAFoCEdAm+Nn8Kohp3V9lChoBkdAIwibUgB91GgHS8JoCEdAm+VBcJMQE3V9lChoBkdAcii+iJwbVGgHTV0CaAhHQJvsNArxy4p1fZQoaAZHQHEXOe4Cp3poB00CAWgIR0Cb7i8Jlar4dX2UKGgGR0Bwf5wm3OObaAdNIQFoCEdAm/BpCBwuNHV9lChoBkdASfp+SbH6uWgHS8poCEdAm/H0jxCpm3V9lChoBkdAJqaSDAaegGgHS8poCEdAm/NDEm6XjXV9lChoBkdAYS4xwAEMb2gHTegDaAhHQJv6DeYUnG91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQXGZJSjPnjK0ux4FvVVYUaowDaW5jlIoRUV05qmPC2WSOpc7sJ5l2vgB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKsVwocnVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}