import argparse import json import os from funasr import AutoModel def read_wav_scp(wav_scp_file: str): """读取 wav.scp 文件,返回 (id, wav_path) 元组列表。""" wav_files = [] with open(wav_scp_file, 'r') as f: for line in f: id, wav_path = line.strip().split(" ", 1) # 只根据第一个空格切分 wav_files.append((id, wav_path)) return wav_files def save_results(results, output_file: str): """将推理结果保存到指定的文件中,格式为 'key text' 每行一条。""" with open(output_file, 'w') as f: for result in results: key = result.get("key", "") text = result.get("text", "") f.write(f"{key} {text}\n") def main(): # 解析命令行参数 parser = argparse.ArgumentParser(description="Run speech recognition inference") parser.add_argument('--model', type=str, required=True, help="Model name or path") parser.add_argument('--wav_scp_file', type=str, required=True, help="Path to wav.scp file") parser.add_argument('--output_dir', type=str, required=True, help="Directory to save inference results") parser.add_argument('--device', type=str, default="cpu", choices=["cpu", "cuda"], help="Device to run inference on") parser.add_argument('--output_file', type=str, required=True, help="File to save the inference results") args = parser.parse_args() # 初始化模型 print(f"Initializing model {args.model}...") model = AutoModel(model=args.model, device=args.device) # 读取 wav.scp 文件 wav_files = read_wav_scp(args.wav_scp_file) # 存储所有推理结果 all_results = [] # 遍历每个音频文件并进行推理 for id, wav_path in wav_files: print(f"正在处理音频文件 {id}: {wav_path}") res = model.generate(wav_path) print(f"推理结果: {res}") if res: # 提取推理结果中的 key 和 text key = id text = res[0].get("text", "") all_results.append({"key": key, "text": text}) # 将推理结果保存到文件 save_results(all_results, args.output_file) print(f"推理结果已保存到 {args.output_file}") if __name__ == "__main__": main()