Upload infer_qwen2.5omni.py
Browse files- infer_qwen2.5omni.py +68 -0
infer_qwen2.5omni.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from qwen_omni_utils import process_mm_info
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
|
| 4 |
+
import librosa
|
| 5 |
+
import os
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from urllib.request import urlopen
|
| 8 |
+
import argparse
|
| 9 |
+
# @title inference function
|
| 10 |
+
def inference(audio_path,model,processor,prompt, sys_prompt):
|
| 11 |
+
messages = [
|
| 12 |
+
{"role": "system", "content": [{"type": "text", "text": sys_prompt}]},
|
| 13 |
+
{"role": "user", "content": [
|
| 14 |
+
{"type": "audio", "audio": audio_path},
|
| 15 |
+
{"type": "text", "text": prompt},
|
| 16 |
+
]
|
| 17 |
+
},
|
| 18 |
+
]
|
| 19 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 20 |
+
audios, images, videos = process_mm_info(messages, use_audio_in_video=True)
|
| 21 |
+
inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True)
|
| 22 |
+
inputs = inputs.to(model.device).to(model.dtype)
|
| 23 |
+
|
| 24 |
+
output = model.generate(**inputs, use_audio_in_video=True, return_audio=False, thinker_max_new_tokens=256, thinker_do_sample=False)
|
| 25 |
+
|
| 26 |
+
text = processor.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 27 |
+
return text
|
| 28 |
+
|
| 29 |
+
def transcribe(wavs_path, out_path, gpu_id, model):
|
| 30 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
|
| 31 |
+
model_path = model
|
| 32 |
+
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
|
| 33 |
+
model_path,
|
| 34 |
+
torch_dtype=torch.bfloat16,
|
| 35 |
+
device_map="auto",
|
| 36 |
+
)
|
| 37 |
+
prompt = "请将这段中文语音转换为纯文本,去掉标点符号。"
|
| 38 |
+
processor = Qwen2_5OmniProcessor.from_pretrained(model_path)
|
| 39 |
+
with open(wavs_path, "r") as f_in, open(out_path, "w") as f_out:
|
| 40 |
+
for line in f_in:
|
| 41 |
+
utt, path = line.strip().split(" ", maxsplit=1)
|
| 42 |
+
try:
|
| 43 |
+
response=inference(path,model,processor, prompt=prompt, sys_prompt="You are a speech recognition model.")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Inference failed: {str(e)}")
|
| 46 |
+
response="None"
|
| 47 |
+
text = response[0].strip()
|
| 48 |
+
lines = text.strip().splitlines()
|
| 49 |
+
text = lines[-1]
|
| 50 |
+
print(f"[{utt}] >>> {text}")
|
| 51 |
+
f_out.write(f"{utt} {text}\n")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
if __name__ == "__main__":
|
| 57 |
+
parser = argparse.ArgumentParser()
|
| 58 |
+
parser.add_argument("--wavs_path", type=str)
|
| 59 |
+
parser.add_argument("--out_path", type=str)
|
| 60 |
+
parser.add_argument("--gpu", type=int, default=0)
|
| 61 |
+
parser.add_argument("--model", type=str)
|
| 62 |
+
args = parser.parse_args()
|
| 63 |
+
transcribe(
|
| 64 |
+
wavs_path=args.wavs_path,
|
| 65 |
+
out_path=args.out_path,
|
| 66 |
+
gpu_id=args.gpu,
|
| 67 |
+
model=args.model
|
| 68 |
+
)
|